

Инструкция по эксплуатации крыльчаточного расходомера

Модель: DRG-...

1. Содержание

1.	Содержание	2
	Примечание	
	Технические нормы применения	
	Принцип работы	
5.	Контрольный осмотр прибора	5
	Механическое соединение	
	Электрическое соединение	
	Ввод в эксплуатацию – Измерительная элетроника	
	Технические данные	
10.	Детализация заказа	113
	Техническое обслуживание	
	Габаритные размеры	
	Заявление о соответствии	

Произведено и реализованно:

Коболд Мессринг ООО Нордринг 22-24 D-65719 Хофхайм Тел.: +49(0)6192-2990

Факс: +49(0)6192-23398

E-Mail: <u>info.de@kobold.com</u> (Представительство в РФ: <u>market@koboldgroup.ru</u>) Сайт: <u>www.kobold.com</u> (Представительство в РФ: <u>http://www.koboldgroup.ru</u>)

Page 2 DRG K01/0407

2. Примечание

Перед распаковкой и введением прибора в эксплуатацию ознакомьтесь с инструкцией по эксплуатации. Строго соблюдайте предписания, описанные ниже.

Приборы должны эксплуатироваться, обслуживаться и ремонтироваться персоналом, изучившим эту инструкцию по эксплуатации, и в соответствии с действующими на предприятии предписаниями по технике безопасности и охране труда.

Эксплуатация измерительного прибора в машинах допускается только при условии соответствия этих машин нормативам EWG (Environmental Working Group).

PED 97/23/EC (Директива СЕ по оборудованию, работающему под давлением)

В соответствии с пунктом 3 параграфа (3), "Надежность технической эксплуатации", PED 97/23/ЕС без знака сертификата соответствия СЕ. Таблица 8, трубы, опасные жидкости 1-ой группы.

3. Технические нормы применения

Расходомер ротационного типа модели DRG-... должен эксплуатироваться с соблюдением указанных эксплуатационных ограничений прибора. Любая эксплуатация, которая выходит за рамки технических условий запрещена. Производитель не несет ответственности за любые повреждения полученные в результате такой эксплуатации. Вся ответственность ложится на потребителя. Технические условия применения включают в себя предписания производителя по установке, запуску и обслуживанию прибора.

4. Принцип работы

Расходомеры ротационного типа серии DRG фирмы Коболд используются для измерения и контроля расхода маловязкой жидкости. Приборы серии DRG работают на основе хорошо известного принципа вращающихся лопастей. Магнит, герметично встроенный в лопасть во избежание воздействия текущей среды, передает вращательное движение лопатки датчику на эффекте Холла, установленному в корпусе. Датчик, в свою очередь, преобразует вращательное движение, прямопропорциональное расходу жидкости, в сигнал с частотным кодированием. Следовательно частота пропорциональна расходу жидкости. Последовательно включенный

DRG

узел электроники преобразует и передает сигнал на аналоговый выход, ограничительные контакты или дисплей.

Page 4 DRG K01/0407

5. Контрольный осмотр прибора

Приборы проверяются до отправки и высылаются клиенту в идеальном состоянии. При обнаружении признаков дефекта на приборе, тщательно проверьте целостность поставочной упаковки. При наличии дефекта проинформируйте об этом вашу службу доставки/экспедитора, так как они несут ответственнсть за повреждения во время транспортировки.

Объем поставки:

- Расходомер ротационного типа, модель: DRG
- Инструкция по эксплуатации

6. Механическое соединение

6.1. Проверьте эксплуатационные условия:

- Максимальный расход жидкости
- Максимально допустимое рабочее давление
- Максимально допустимую рабочую температуру

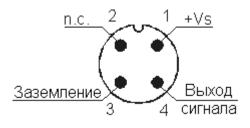
Внимание! Превышение допустимых значений может привести к повреждению подшипников и существенным погрешностям в измерениях.

6.2. Установка

- Убедитесь, что измерительная полость постоянно заполняется жидкостью, особенно при направлении потока жидкости сверху вниз. Прямолинейные участки на впускных и выпускных соединениях не требуются.
- Направление потока в соответствии с указательной стрелкой (положение любое), лицевая часть прибора устанавливается в вертикальной плоскости.
- На впуске и выпуске измерительного прибора требуются прямолинейные участки трубопровода такого же диаметра как и патрубки прибора. Это обеспечивает точность измерений, указанных в технических условиях. Требуется минимум 20 диаметров трубы с потоком без препятствий непосредственно выше по потоку и 5 диаметров трубы с потоком без препятствий непосредственно ниже по потоку от расходомера.
- Не допускайте растягивающих и сжимающих нагрузок.
 Впускное и выпускное отверстия должны быть на расстоянии 50 мм от места соединения.
- Проверьте герметичность соединений.

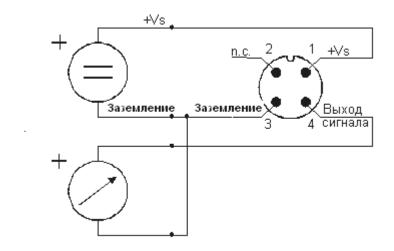
7. Электрическое соединение

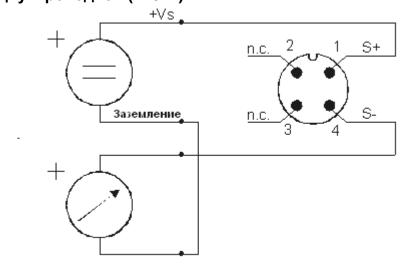
7.1. Общие сведения


Внимание! Убедитесь в соответствии питающего напряжения техническим требованиями по напряжению расходомера.

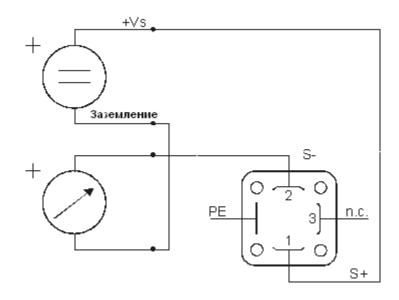
- Убедитесь, что линии электропитания отключены.
- Подключите электропитание и выходной сигнал к контактным штырькам как показанно ниже.
- Мы рекоммендуем использовать кабель с поперечным сечением 0.25мм² для электропитания.

Внимание! Неправильное подключение разъемов может привести к неустраняемым повреждениям электроники прибора.


7.2. Измерительная электроника: Частотный выход (...F300; ...F320, ...F340)

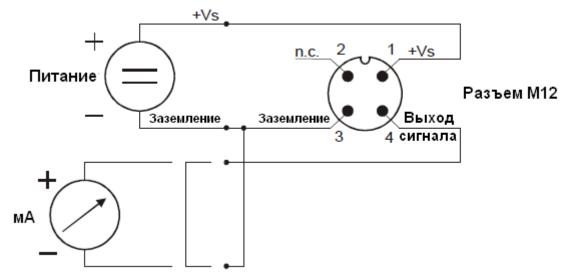

Page 6 DRG K01/0407

7.3. Измерительная электроника: Аналоговый выход (..L303, ..L342, ..L343, ..L442)


Трехпроводной (..L303, ..L343)

Двухпроводной (..L342)

Двухпроводной, разъем по стандарту DIN (немецкий промышленный стандарт) (..L442)



7.4. Компактная электроника: (..C30R, ..C30M, ..C34P, ..C34N)

Смотрите дополнительное руководство по компактной электронике

Page 8 DRG K01/0407

7.5. Измерительная электроника: Стрелочный дисплей (..Z300, ..Z340)

Внимание! Если токовый выход не задействован, разъем 4 (выход сигнала) должен быть перманентно подключен к заземлению (GND) (короткозамыкающая перемычка).

8. Ввод в эксплуатацию – Измерительная электроника

8.1. Общие сведения

Измерительные устройства предварительно настраиваются на заводеизготовителе и готовы к эсплуатации после подключения электрических соединений.

8.2. Настройка – Измерительная электроника

Смотрите дополнительное руководство по компактной электронике с частотным выходом

9. Технические данные

9.1. Данные по сенсору

Комбинации материалов: смотрите детализацию заказа Макс. допустимое рабочее давление: смотрите детализацию заказа Макс. допустимая рабочая температура: смотрите детализацию заказа

Точность измерения: ±3% f.s.

Электрическое соединение: разъемный DIN 43 650,

разъем М12х1

Потери давления: максимально 1 бар при

максимальном диапазонном

значении

Защита: ІР65 (Международная

классификация степеней защиты)

Деталь прибора	Код заказа: 1	Код заказа: 2	Код заказа: 4	Код заказа: 5	Код заказа: 8	Код заказа: 9
Корпус	Алюминий -бронза	Алюминий -бронза	1.3955	1.3955	PP	PP
Кожух корпуса	PSU	Алюминий -бронза	PSU	1.4404	PP	PSU
Уплотнение	NBR	NBR	FPM	FPM	NBR	NBR
Лопасть	PTFE	PTFE	PTFE	PTFE	PTFE	PTFE
Ось	Керамика	Керамика	Керамика	Керамика	Керамика	Керамика
Подшипник и	PTFE	PTFE	PTFE	PTFE	PTFE	PTFE
Макс. давление	16 бар	40 бар	16 бар	40 бар	7 бар	7 бар
Макс. температура	80°C	80°C	80°C	80°C	80°C	80°C
Вес датчика	580 г	580 г	480 г	480 г	120 г	120 г

(PTFE – политетрафторэтилен) (PP – полипропилен)

9.2. Измерительная электроника

Частотный выход (... F300)

Питающее напряжение: 12 – 28 В постоянного тока

Потребляемая мощность по току: 10 мА

Импульсный выход: PNP, разомкнутый коллектор, макс.

25 MA

Электрическое соединение: Соединительный разъем М12х1

Page 10 DRG K01/0407

Частотный выход с делителем частоты

Питающее напряжение: 24 В постоянного тока ± 20%

Потребляемая мощность по току: 15 мА

Импульсный выход: PNP, разомкнутый коллектор, макс.

25 мА

Электрическое соединение: Разъем М12х1

Коэффициент деления: 1...1/128, заводская настройка

Аналоговый выход (опция: съемный дисплей)

Питающее напряжение: 24 В постоянного тока ± 20%

Выход: 0-20 мА или 4-20 мА,

двухпроводной или трехпроводной

Предельно допустимая нагрузка: 500 Ом

Электрическое соединение: Разъем M12x1 или DIN 43 650 Опция: Съемный дисплей (только для

разъема DIN 43 650 и выхода 4-20

мА), двухпроводной

Компактная электроника

Дисплей: 3-знаковыйцифровой LED

(светодиодный индикатор)

Аналоговый выход: (0)4 -20мА настраиваемый, макс.

500 Ω

Коммутационные выходы: 1 (2) полупроводник PNP or NPN,

заводская настройка

Работа контактов: Контакт N/C / N/O c

программируемой частотой

Настройка: с помощью двух кнопок

Питание: 24 В постоянного тока \pm 20%,

трехпроводной вариант

приблизительно 100 мА

Электрическое соединение: Соединительный разъем М12х1

Стрелочный дисплей с аналоговым выходом

Корпус: Алюминий

Дисплей: Подвижная катушка, дисплей 240° Питающее напряжение: 24 В постоянного тока ± 20%

Выход: 0-20 мА или 4-20 мА, трехпроводной

Предельно допустимая нагрузка: 250 Ом

Электрическое соединение: Разъем М12х1

10. Детализация заказа

(Пример – **DRG-1105 G1 F300**)

Диапазон измерения Приблиз.		Диаметр	Модель	Coe	динение		
л/ми нвод ы	частота (Гц) при f.s.	диафраг мы [мм]		Стандартна я гаечная резьба	Специальная гаечная резьба	Измерительная электроника	
0,5-12	120	6	DRG-1X05	G1 =G 1/8	N1 =1/8 NPT	Частотный выход F300 = Частотный выход, разъем M12x1	
0,5-25	217	6	DRG-1X10	G2 =G 1⁄4	N2. .=1/4 NPT	F320= Частотный делитель 1:2, разъем M12x1F340= Частотный делитель 1:4, разъем M12x1	
1-30	217	8	DRG-1X15	G2 =G 1⁄4	N2 =1/4 NPT	F390= Частотный делитель 1 ¹ /128, разъем M12x1 Аналоговый выход	
1-30	190	7	DRG-1X15	G4. .=G ½	N4. .=1/2 NPT	L303= 0-20 мА выход, трехпроводной, разъем M12x1L342= 4-20 мА выход, двухпроводной, разъем M12x1L343= 4-20 мА выход, трехпроводной, разъем M12x1L442= 4-20 мА выход, двухпроводной, разъем DIN 43 6	
2-45	215	8	DRG-1×20	G4 =G ½ G5 =G ¾ G6 =G 1	N4 =1/2 NPT N5 =3/4 NPT N6 =1 NPT	Компактная электроника*C30R= светодиодный дисплей, 2 разомкнутых коллектора, PNP, разъем M12x1	
5-90	265	12	DRG-1X25	G4 =G ½ G5 =G ¾ G6 =G 1	N4=1/2 NPT N5=3/4 NPT N6=1 NPT	C30M= светодиодный дисплей, 2 разомкнутых коллектора, NPN, разъем M12x1C34P= светодиодный дисплей, 4-20 мA, 1 разокмнутый коллектор, PNP, разъем M12x1	
5-140	116	16	DRG-1X30	G5 =G ¾	N5. .=3/4 NPT	C34N= светодиодный дисплей, 4-20 мА, 1 разомкнутый коллектор, NPN, разъем M12x1	
10-140	180	16	DRG-1×35	G6 =G 1	N6. .=1 NPT	Стрелочная индикация*Z300= 240° - стрелочная индикация, 0-20 мА, разъем М12х1Z340= 240° - стрелочная индикация, 4-20 мА, разъем М12х1	

^{*}Пожалуйста, укажите направление потока в письменной форме .

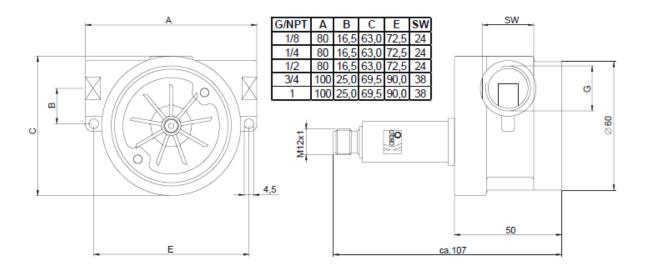
Съемный дисплей

Для модели DRG...L342 (с выходом 4-20 мА и разъемом DIN)

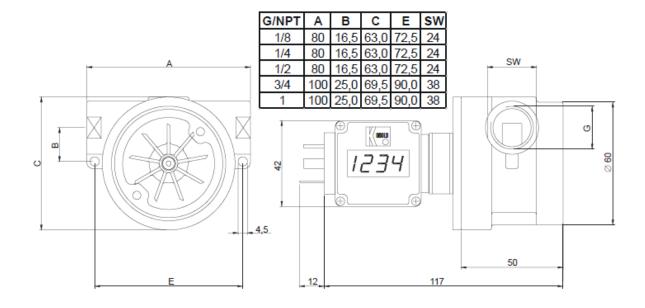
Описание	Номер заказа
Четырехзнаковый светодиодный индикатор, разъем DIN 43650,	
двухпроводной, электропитание	AUF-1000
посредством аналогового выхода	
То же, что и выше, только с	
дополнительным выходом	AUF-1001
разомкнутого коллектора	

Page 12 DRG K01/0407

11. Техническое обслуживание

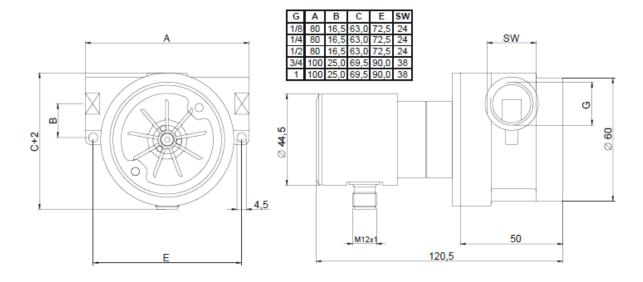

Измерительное устройство не требует технического обслуживания если измеряемая жидкость не способствует отложению загрязняющих примесей. Во избежание таких проблем мы рекомендуем устанавливать фильтр, например магнитный фильтр модели MFR.

В случае необходимости очистка внутренних частей сенсора проводится после открытия сенсора. Не допускайте повреждения сенсора, в особенности лопастей во время демонтажа. Запомните положение лопастей во время демонтажа и установите их в то же положение во время сборки.

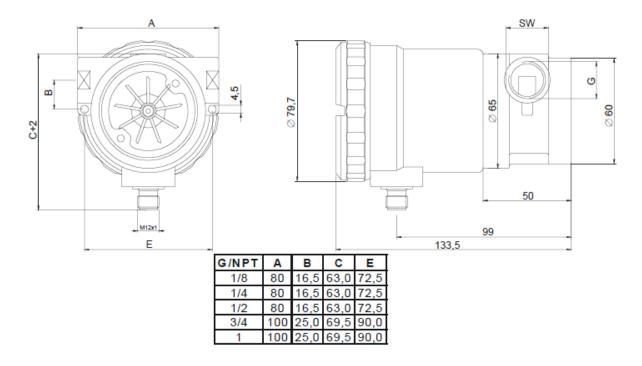

Во избежание аннулирования гарантийных обязательств ремонтные работы по электронному оборудованию могут производиться только поставщиком.

12. Габаритные размеры

Модель: DRG-F (частотный выход) DRG...L3... (с аналоговым выходом)



Модель: DRG-..L442 (с аналоговым выходом и поставляемым по заказу съемным дисплеем)



Page 14 DRG K01/0407

Модель: DRG-..С.. (с компактной электроникой)

Модель: DRG-..Z.. (с стрелочным дисплеем)

13. Заявление о соответствии

Мы, компания Коболд-Мессринг ООО, Хофхайм, Германия, со всей ответственностью заявляем, что изделие:

Расходомер ротационного типа модели: DRG -...

к которому и относится данное свидетельство, соответствует всем нижеперечисленным стандартам:

DIN EN 50081-2 1994-03 DIN EN 61000-6-2 2000-03 DIN EN 61010-1 1994-03 DIN VDE 0470-1 1992-11

(DIN Deutsche Industrie Norm – немецкий промышленный стандарт)

А так же отвечает следующим требованиям EWG:

2004/108/EC EMC Directive

(Директива СЕ по электромагнитной совместимости)

2006/95/EC Low Voltage Directive

(Директива СЕ по низковольтному электрооборудованию)

Хофхайм, 16 января, 2007

X. Петерс М. Вензел Генеральный директор Доверенное лицо

pps. Willen

Page 16 DRG K01/0407