

Измерительный преобразователь

UMF

для магнитно-индуктивных расходомеров

Инструкция по эксплуатации

Внимательно прочитайте данную инструкцию по эксплуатации и сохраняйте ее для справок Возможны модификации размеров, веса и других технических данных Отпечатано в Германии

Operating Instructions UMF,

File: UMF_BA_02_eng

Содержание

страница

1 1.1 1.2 1.3 1.4 1.5	Введение Технология Транспортировка, доставка, хранение Гарантийные обязательства Ремонт и опасные материалы Дополнительная документация для приборов, размещаемых в опасных зонах	.5 5 5 5
2	Производитель	.6
3	Применение	.6
4	Принцип действия и дизайн системы	7
4.1	Принцип измерения	7
4.2	Дизайн системы	7
4	.2.1 Модуль памяти данных (DSM)	7
4	.2.2 Безопасность работы	7
_		~
5	Вход	.8
5.1	Измеряемая переменная	8
5.2	Диапазон измерения	8
5.3	Дополнительные входные переменные	8
5.4	Работа датчиков скорости потока РП и РП у с ОМЕ	8
6	Выхолы	9
61	Выходные сигналы	9
6.2	Сигнал неисправности	.0 Q
6.3	Нагрузка токового выхода	.9
64	Затухание	.9
6.5	Отсечка мапого потока	.9
_		
7	Собственные значения	10
7.1	Исходные условия	10
7.2	Допустимое отклонение измерений	10
7.3	Повторяемость	10
7.4	Влияние внешней температуры	10
8	Рабочие условия	10
81	Усповия инсталляции	10
8	1.1 Компактный монтаж	10
8	.1.2 Раздельный монтаж	10
8.2	Условия окружающей среды	11
8.	2.1 Внешняя температура	.11
8.	2.2 Температура хранения	.11
8.	2.3 Степень защиты	.11
8.	.2.4 Тип защиты для версии, устанавливаемой в опасных зонах	11
8.	.2.5 Электромагнитная совместимость	12
8.3	Условия процесса	12
8.	3.1 Температура среды	12
8.	.3.2 Агрегатное состояние	12
8.	.3.3 Вязкость	12
8.	.3.4 Ограничение скорости потока	12
8.	3.5 Потери давления	12

9 Детал	и конст	рукции	13
9.1 ІИП	конструн	ции/гаоариты	13
9.2 Mac			14
9.3 IVIAI	ериал		14
9.4 При	соедине	ние к процессу	14
9.5 316	Прическ	сое присоединение	14
9.5.1	Споние		10
9.5.2	Стецио	рикации каоеля при раздельном монтаже	10
9.5.5		ала электропроводки компактной версии датника и ЦМЕ	/
9.5.5.1		и злектропроводки компактной версии датчика и ОМП	17 18
9.5.5.2	Присос		10
9.5.4	Присое	сдинение пакт	10
5.5.5	присос		15
10 Дисп.	лей и и	нтерфейс оператора	.19
10.1 Of	щая инф	ормация	19
10.2 Дис	ллей	·	19
10.3 Инт	герфейс	оператора	19
10.3.1	Терми	нал оператора	19
10.3.2	Клавиі	ии и их функции	19
10.3.2.	1 Реж	имы работы	. 21
10.3.2.	2 Паро	и	21
10.3.3	Структ	ура программного обеспечения	21
10.3.3.	.1 Усло	овные обозначения(легенда)	. 21
10.3.4	Рабочі	ий пример изменения значения затухания	22
10.3.5	Функци	ональные классы преобразователя UMF без функциональных функций .	23
10.3.6	Структ	ура программного обеспечения	31
10.3.6.	1 Фун	кциональный класс ИЗМЕРЯЕМЫЕ ВЕЛИЧИНЫ	. 31
10	.3.6.1.1	Объемный расход потока	. 31
10	0.3.6.1.2	Относительный поток	. 31
10	.3.6.1.3	Счетчик прямого потока 1	. 31
10	.3.6.1.4	Счетчик прямого потока 2	. 32
10	1.3.0.1.5	Счетчик обратного потока	. 32
10		Скорость потока	32
10 2 6	0.3.0.1.7 2 • • • • •	дисплеи во время запуска	3Z
10.3.6.	∠ Ψyπi \2624	Паради дади заратада	აა იი
10	2622	Пароль пользователя.	. 33 24
1036	3 MVU	изменение пароля полвзователя	. 34
10.3.0.	.3 Ψyπ I3631		. 34
10	3632	Сблос счетчика 1	34
10	3633	Сброс счетчика 2	34
10	3634	Сброс счетчика обратного потока	. 35
10.3.6	4 Фvн	сорос с нег ила соратного потокалительный класс ОБРАБОТКА ИЗМЕРЕНИЙ	
10	3641	Затухание (постоянная времени)	35
10	3642	Отсечка малого потока	35
10	3.6.4.3	Гистерезис отсечки малого потока	
10	.3.6.4.4	Калибровка нулевой точки	
10.3.6.	5 Функ	циональный класс ПОТОК	36
10	.3.6.5.1	Единицы объема потока	36
10	.3.6.5.2	Нижнее значение диапазона объема потока	37
10	.3.6.5.3	Верхнее значение диапазона объема потока	37
10	.3.6.5.4	МІХ предел объема потока	37
10	.3.6.5.5	МАХ предел объема потока QV	37

10.3.6.5.6 Гистерезис предельного значения QV	
10.3.6.5.7 Объем потока LSL (информационное поле)	38
10.3.6.5.8 Объем потока USL (информационное поле)	
10.3.6.6 Функциональный класс ИМПУЛЬСНЫЙ ВЫХОД	38
10.3.6.6.1 Импульсный или частотный выход	38
10.3.6.6.2 Единицы импульсного выхода	39
10.3.6.6.3 Величина импульса	39
10.3.6.6.4 Длительность импульса	39
10.3.6.7 Функциональный класс ДВОИЧНЫЕ ВЫХОДЫ И ВХОДЫ	40
10.3.6.7.1 Двоичный выход активный	40
10.3.6.7.2 Назначение двоичного выхода В2 (выход состояния)	40
10.3.6.7.3 Назначение двоичного выхода ВЗ (опция для момента передачи операции)	40
10.3.6.7.4 Назначение двоичного входа	41
10.3.6.8 Функциональный класс ТОКОВЫЙ ВЫХОД	. 41
10.3.6.8.1 Токовый выход 0/4-20 мА	41
10.3.6.8.2 Токовый выход тревоги	. 42
10.3.6.9 Функциональный класс МОДЕЛИРОВАНИЕ	42
10.3.6.9.1 Моделирование вкл/выкл	. 42
10.3.6.9.2 Моделирование заданного значения Q/прямое	. 42
10.3.6.9.3 Моделирование заданного значения Q	. 43
10.3.6.9.4 Прямое моделирование выходов В2 и В3	. 43
10.3.6.9.5 Прямое моделирование импульсного выхода	. 43
10.3.6.9.6 Прямое моделирование токового выхода	. 43
10.3.6.10 Функциональный класс САМОКОНТРОЛЬ	44
10.3.6.10.1 Самоконтроль вкл/выкл	44
10.3.6.10.2 Период самоконтроля (STP)	. 44
10.3.6.10.3 Ссылка калибровки вкл/выкл	. 44
10.3.6.10.4 Период ссылки калиоровки (GAP)	. 45
10.3.6.10.5 Выявление пустои трубы вкл/выкл	45
10.3.6.10.6 Период выявления пустои трубы	. 45
	45
10.3.6.11.1 ПОСТОЯННАЯ ДАТЧИКА С	40
10.3.0.11.2 ТИП ДАТЧИКА	40
10.3.6.11.7 DHy1ренний диаметр 10.3.6.11.4 Доцик	40
10.3.6.11.5 Uactora postowneuwa	40
10.3.6.11.6 Частота питающей цепи	47
10.3.6.11.7 Направление потока	47
10.3.6.11.8 Версия программного обеспечения (информационное поле)	47
10.3.6.11.9 Серийный номер (информационное поле)	48
10.3.6.11.10 Серийный номер UMF(информационное поле)	48
10.3.6.11.11 Запрос ошибок системы	48
10.4 Сообщения об ошибках преобразователя UMF	48
10.4.1 Самоконтроль неисправностей	48
10.4.1.1 Ошибка системы	49
11 Сертификаты и одобрения	.50
12 Внешние стандарты и лирективы	50
13 Topropule odwolu Hoinriche Mosstochnik	.55 E0
13.1 Представители	50
14 Примечания	51

1 Введение

1.1 Технология

Измерительный преобразователь UMF управляется мощным новейшим 16-бит микроконтроллером. Благодаря действию HART[®], данные могут передаваться на переносной орган управления. Функционирование прибора в системе полевой шины обеспечивается так называемым коммуникационным модулем, который можно легко заменять или модифицировать. Передовые коммуникационные модули (например, Profibus PA и Profibus DP/V1) находятся в рамках подготовки и могут модифицироваться позже.

Благодаря одобрению EEx de [ia] II C/IIB T6 - T3 или EEx d [ia] II C/IIB T6 - T3, преобразователь пригоден для эксплуатации в опасных зонах. Несколько функций с самоконтролем в техническом и программном обеспечении гарантируют распознавание ошибок. Интерфейс оператора оборудован многочисленными программными функциями и оптимизирован для простого управления. Отдельный терминал оператора имеет 2-проводной LCD и оптимизированную клавиатуру. Оператор может вращать установленный в соединительном отделении терминал на 90 градусов – в зависимости от положения монтажа измерительного прибора – не открывая корпус электроники. Орган управления может монтироваться отдельно от преобразователя, если, например, нет доступа или для удобства оператора. Орган управления должен устанавливаться в корпус, степень защиты которого, по крайней мере, IP 20. Максимальное расстояние между измерительным преобразователем и органом управления до 200 м.

1.2 Транспортировка, доставка, хранение

Во время транспортировки и хранения оберегайте упакованный прибор от влажности, загрязнения и сильных механических воздействий.

При получении проверьте комплект поставки и соответствие данных прибора данным в записях о поставке и списке заказа.

О всех повреждениях при доставке сообщайте немедленно. Сведения о повреждениях, заявленные позже, не принимаются.

1.3 Гарантийные обязательства

Измерительный преобразователь изготовлен на заводе на основе высококачественных стандартов и прошел тщательную проверку. Если, однако, возникнет основание для жалоб, мы готовы обеспечить быстрое обслуживание при условии, что прибор использовался должным образом (как предписано).

Срок и масштаб гарантии смотрите, пожалуйста, в условиях договора о поставке. К гарантийным обязательствам следует обращаться только в том случае, если прибор был установлен и введен в эксплуатацию согласно инструкции. Необходимый монтаж, запуск и техническое обслуживание могут осуществляться только персоналом, имеющим соответствующую квалификацию и право.

1.4 Ремонт и опасные материалы

Прежде, чем отослать расходомер на ремонт в Heinrichs Messtechnik, необходимо предпринять следующие меры:

Operating	Instructions	UMF,
-----------	--------------	------

- во всех случаях пришлите вместе с прибором описание неисправности и характеристику химических и физических свойств измеряемой среды;
- удалите все остатки среды и тщательно проверьте, чтобы во внутренних пазах и выемках не осталось жидкости. Это особенно важно, если среда опасна для здоровья (например, коррозийная, ядовитая, канцерогенная или радиоактивная).

Затраты, вызванные передачей прибора или травмами персонала (например, ожоги) из-за того, что прибор не был тщательно вычищен, ложатся на фирму владельца.

1.5 Дополнительная документация для приборов, размещаемых в опасных зонах Измерительные приборы, предназначенные для использования в опасных зонах, имеют соответствующее обозначение на типовой плате. Они поставляются с отдельной Инструкцией по Безопасности эксплуатации и сертификатом соответствия. Необходимо строго выполнять требования установки и электрических данных.

2 Производитель

 Heinrichs Messtechnik GmbH

 Ул Роберт-Пертель 9, D-50739, Кельн

 P.O. Вох 60 02 60 D-50682 Кельн

 Тел.: +49 221 4 97 08-0

 Факс: +49 221 4 97 08-92

 Internet: http://www.heinrichs-mt.com

 Е-mail:
 info@heinrichs-mt.com

 Представительство в РФ: http://www.koboldgroup.ru

Тип изделия: Измерительный преобразователь для магнитно-индуктивных расходомеров Наименование изделия: UMF

Номер версии: UMF_BA_02_eng Дата: 21.06.2005

3 Применение

Программируемый и управляемый процессором преобразователь UMF для датчиков серии EPY/EPYE, PIT и PITY анализирует и проводит первичную обработку измеряемых данных. Результаты измерения можно выводить на экран и передавать различными способами.

Прибор UMF спроектирован с коммуникационными возможностями и может применяться как с протоколом HART[®], так и с Profibus (PA, DP/V1) после установки соответствующего коммуникационного модуля. Преобразователь можно модифицировать в соответствии с требованиями заказчика, используя терминал оператора. В то время как базовая конфигурация установлена на Heinrichs Messtechnik (например, калибровка преобразователя), дополнительные настройки могут проводиться заказчиком и, при необходимости, модифицироваться (например, предварительное процессирование и оценка или вывод на экран и распечатка измеряемых данных). Настройки заказчика защищены паролем пользователя, и заказчик может этот пароль менять.

Данные особой важности, необходимые для правильного функционирования преобразователя (например, значение калибровки и базовые настройки), защищены служебным паролем.

4 Принцип действия и дизайн системы

4.1 Принцип измерения

Еще в 1832 Фарадей предложил использовать принцип электромагнитной индукции для измерения скорости потока. Его опыты в Темзе, хотя они и потерпели неудачу из-за наложенных эффектов поляризации, считаются, тем не менее, первым экспериментом в области магнитноиндуктивного измерения потока. Согласно закону электромагнитной индукции Фарадея в электропроводящей жидкости, движущейся в магнитном поле В, производится электрическое поле E со скоростью v согласно векторному произведению E = [v x B].

Через трубу измерительного прибора, обеспеченную изоляционной прокладкой, течет жидкость со скоростью v и коэффициентом потока Q, производя при этом в измерительной цепи напряжение Um на двух электродах, расположенных под прямым углом относительно направления потока. Величина этого напряжения измерительной цепи пропорциональна среднему значению скорости потока и объемному расходу потока.

4.2 Дизайн системы

Измерительный прибор состоит из датчика (например, серии EPYE) и преобразователя UMF. Преобразователь EPY(E) применяется для измерения жидкой среды. При выборе материала трансмиттера, соответствующего среде, можно измерять любую жидкую среду.

Преобразователь UMF вырабатывает индуктивный ток, необходимый для магнитного поля и первичной обработки индуцированного на электродах напряжения. Аналоговый 0/4-20 мА выход - стандартная характеристика прибора, а передача цифровых данных посредством протокола HART[®] или PROFIBUS (PA, DP/V1) - опциональная.

4.2.1 Модуль памяти данных (DSM)

Память данных – сменный модуль памяти данных на дополнительном программном модуле PCB. Модуль содержит все характеристики датчика (например, постоянную датчика, номер версии или серийный номер).

После замены трансмиттера или его электроники DSB устанавливается в новый трансмиттер. После запуска системы измерения отсчет измерения будет продолжать работать со значениями, сохраненными в DSM. Таким образом, DSM обеспечивает максимальную защиту и комфорт при замене компонентов прибора.

4.2.2 Безопасность работы

Комплексная система с самоконтролем гарантирует максимальную безопасность работы.

- Потенциальные ошибки немедленно передаются через реконфигурируемый выход состояния (двоичный выход 2). При этом соответствующее сообщение об ошибке выводится на экран преобразователя. Неисправность вспомогательного источника энергии также может определяться посредством двоичного выхода 2.
- Когда выходит из строя вспомогательный источник энергии, все данные системы измерения сохраняются в DSM (без резервного аккумулятора).
- Все выходы электрически изолированы от вспомогательного источника энергии, цепи датчика и друг от друга.

5 Вход

5.1 Измеряемая переменная

Измеряемая переменная – это индуцированное напряжение, которое представляет объемный расход потока.

5.2 Диапазон измерения

Диапазон измерения зависит от присоединенного датчика EPY(E) и указан в соответствующем перечне данных.

5.3 Дополнительные входные переменные

Двоичный вход опционален. Используя этот вход, можно сбрасывать сообщения об ошибке во время момента передачи информации. Кроме того, в опциональной версии можно производить сброс сумматоров.

В качестве опции, два 0/4–20 мА токовых выхода могут использоваться для считывания дополнительных измеряемых переменных, таких как температура, плотность или уровень. Изза ограниченного числа терминалов нет доступа к третьему двоичному выходу, когда используется первый токовый выход; когда используются первый и второй двоичные выходы, нет второго двоичного выхода. Оба токовых выхода электрически не изолированы.

5.4 Работа датчиков скорости потока РІТ и РІТУ с UMF

Датчики PIT и PITY калиброваны для скорости потока. Чтобы выводить на экран измеряемое значение в единицах объема потока, необходимо преобразование с использованием скорости потока и внутреннего диаметра трубопровода. На UMF следует установить следующие параметры:

1. на функциональном уровне *Настройки датчика* + *UMF* (*Sensor Settings*+*UMF*), установите тип датчика (PIT или PITY). Измерение постоянных датчика автоматически перейдет на м/с*мВ;

2. настройка постоянных датчика в х.ххх м/с*мВ;

3. внутренний диаметр трубы в ххх мм;

4. на функциональном уровне Поток (Flow), установите желаемую единицу объема потока;

5. используя функцию *Верхнее значение диапазона объема потока (Volume Flow Upper-Range Value)*, установите верхнее значение диапазона.

6 Выходы

6.1 Выходные сигналы

Аналоговый выход:	0/4-20 мА токовый выход, электр. изолирован, HART [®] протокол: объемный расход потока Тип защиты EEx "i" или EEx "e"	
Двоичный выход 1:	длительность импульса; значение по умолчанию 50 мс	
(Импульсный/частотный выход)	длительность импульса; регулируемый диапазон 0.5- 2000 мс макс. частота = 1 кГц При программировании длительности импульса проводится поверка достоверности. Если выбранная длительность слишком велика и выходит за установленное верхнее значение диапазона, на экране появляется сообщение об ошибке. Пассивный, через оптрон: Ui = 30 BDC, Ik = 200 мА, P = 3 Ватт Активный, со свободным потенциалом: 24 BDC; макс.200 мА или согласно NAMUR	
aktiv JP10 BR12 BR12 BR11 1 BR11 BR11 BR11	Двоичный выход 1 может соединяться как пассивный или активный выход. Для этого нужно соответствующим образом вставить перемычки дополнительного программного модуля JP10 на PCB UMF10. Для активного выхода надо также закрыть перемычки BR11 и BR12.	
Двоичный выход 2:	Для прямого и обратного потока, MIN Q, MAX Q, выход	
(Выход состояния)	Второй импульсный выход (сдвинут по фазе на 90°) Пассивный, через оптрон: Ui = 30BDC, Ii = 200 мА, Pi = 3 Ватт или согласно NAMUR.	
Двоичный выход 3:	Для прямого и обратного потока, MIN Q, MAX Q, выход	
(Опция)	Пассивный, через оптрон: Ui = 30 BDC, li = 200 мA, Pi = 3 Ватт	

6.2 Сигнал неисправности

Неисправность измерительного прибора может указываться посредством токового выхода или выхода состояния. Сигнал неисправности токового выхода можно установить на 2 мА или 22 мА. Для выхода состояния применяют активную или пассивную настройку.

6.3 Нагрузка токового выхода

Стандартная версия:	≤500	Ом
версия для опасных зон:	≤500	Ом
для HART [®] миним. нагрузка	>250	Ом

6.4 Затухание

Программируемое от 1 до 60 сек, затрагивает все выходные сигналы

6.5 Отсечка малого потока

Отсечка малого потока устанавливается с помощью программного обеспечения в диапазоне от 0 до 10%. Установленное значение соотносится с верхним значением диапазона. Если измеряемая величина ниже установленного объема, аналоговый выход установится на 0/4 мА, а импульсный выход прекращает выработку импульсов.

7 Собственные значения

7.1 Исходные условия

Согласно IEC 770:

температура: 20°С, относительная влажность: 65%, атмосферное давление: 101.3 kPa

7.2 Допустимые отклонения измерения

См. собственные значения соответствующего датчика.

7.3 Повторяемость

См. собственные значения соответствующего датчика.

7.4 Влияние внешней температуры

Для импульсного выхода: ±0.05% на10°К

Для токового выхода: ±0.1% на 10°К

8 Рабочие условия

8.1 Условия инсталляции

Измерительный преобразователь UMFможно монтировать непосредственно на датчике (компактный монтаж), учитывая рабочие условия датчика, или устанавливать отдельно на внешней стене (раздельный монтаж).

8.1.1 Компактный монтаж

Для компактного монтажа корпус преобразователя и терминал оператора ВЕ могут вращаться в диапазоне 90 градусов. Таким образом, прибор можно подогнать под различные рамки монтажа в трубопроводе, что обеспечивает удобное наблюдение и функционирование в любом положении.

8.1.2 Раздельный монтаж

Измерительный преобразователь должен монтироваться отдельно от датчика в следующих случаях:

- зона монтажа труднодостижима;
- не хватает места;
- · температура среды и внешняя температура чрезвычайно высоки;
- наличие сильной вибрации.

Внимание!

- При раздельном монтаже минимально допустимая проводимость среды определяется расстоянием между датчиком и измерителем. Максимальная длина кабеля, гарантирующая точность измерений, 200 м. Тип кабеля см. 9.5 "Электрическое присоединение".
- Электрод кабеля должен быть зафиксирован. Если проводимость среды низкая, движения кабеля могут значительно изменять емкостное сопротивление и, таким образом, искажать измеряемые сигналы.
- Не располагайте кабель рядом с электрическими приборами или переключающими элементами.
- Между датчиком и преобразователем следует обеспечить эквипотенциальное соединение.

• Отсоедините сначала преобразователь от источника первичного питания и только потом присоединяйте или отсоединяйте кабель катушки электромагнита.

Длина кабеля при раздельном монтаже

8.2 Условия окружающей среды

8.2.1 Внешняя температура

от -10°С до +50°С для функционирования дисплея от -20°С до +60°С для работы В случае наружной установки прибор должен быть защищен от прямого солнечного излучения с помощью защитного экрана.

8.2.2 Температура хранения

от -25°С до +70°С

8.2.3 Степень защиты

SG 1 стандартный корпус, IP 68

8.2.4 Тип защиты версии, устанавливаемой в опасных зонах

EEx de [ia/ib] IIC T6-T3 или EEx d [ia/ib] IIC T6-T3 Корпус электроники взрывоустойчив. Отсек соединений: тип защиты "повышенная защита" или "взрывозащищенный корпус"

8.2.5 Электромагнитная совместимость

Измерительная система соответствует следующим стандартам и директивам:

ЕМС Директивы 89/336/EEC, 92/31/EEC, 93/68 EEC EN 50 081 часть 1 EN 50 082 часть 2 NAMUR рекомендация NE21 (для всей измерительной системы)

Электромагнитная совместимость гарантирована только при закрытом корпусе электроники. Если корпус электроники открыт, возможны электромагнитные помехи.

8.3 Условия процесса

8.3.1 Температура среды

См. таблицу данных и сертификат соответствия датчика

8.3.2 Агрегатное состояние вещества

Жидкость

8.3.3 Вязкость

Без ограничений

8.3.4 Предел расхода потока

См. таблицу данных датчика

8.3.5 Потери давления

См. таблицу данных датчика

9 Детали конструкции

9.1 Тип конструкции/габариты

Монтаж на стене

Монтаж на трубопроводе

9.2 Macca

4.5 кг (отдельный преобразователь UMF)

9.3 Материал

Корпус: GK AI Si 12 MG wa, до лакировки пассивирован в хромовой кислоте

9.4 Присоединение к процессу

См. таблицу данных датчика

9.5 Электрическое присоединение

В отсек соединений вы получите доступ, открутив крышку и удалив терминал оператора. Терминал оператора крепится в отсеке соединений посредством съемного терминала и, следовательно, может полностью выниматься.

В версии ЕЕх d необходимо открутить второй винт, удерживающий крышку отсека соединений.

Внимание: Сравните напряжение местной питающей сети со спецификациями на типовой плате.

Следует также строго соблюдать национальные директивы по безопасности инсталляции (например, должны выполняться директивы VDE 0100 или VDE 0165).

Для соответствия степени защиты необходимо обеспечить следующие пункты.

- · Диаметр кабеля должен соответствовать сальнику кабеля.
- Тщательно закрепите используемые сальники кабеля.

· Сальники кабеля, которые не используются, закройте уплотняющими прокладками.

• Убедитесь, что прокладка нажимной крышки корпуса плотно встала на место.

Вспомогательный источник энергии:24 В АС; +10%, -15%; 50/60 Гц

230 B; +10%, -15%;50/60 Гц 115 B; +10%, -15%;50/60 Гц 24 B DC; +20%, -15%

Энергия на входе: 12 VA

АС – переменный ток; DC – постоянный ток

9.5.1 Присоединения UMF

Терминал	Описание
	Питающая сеть
L	Проводник (L+)
Ν	Нулевой (L-)
	провод
PE	Заземление

	присоединения датчика
Экран	
E1	Электрод 1
E2	Электрод 2
Экран	
FE	Функциональное заземление (дистанционное для измерительного сигнала)
SP-	Катушка электромагнита (-)
SP+	Катушка электромагнита (+)

Присоединения датчика

	Выходные сигналы
+	Терминал оператора
-	Терминал оператора
11	- Токовый выход (HART®)
12	+ Токовый выход (HART®)
15	- Двоичный выход 1 активный
16	 - Двоичный выход 1 пассивный (импульсный)
17	+ Двоичный выход 1 пассивный (импульсный)
18	+ Двоичный выход 1 активный
19	- Двоичный выход 2 (состояние/импульс)
20	+ Двоичный выход 2 активный 2 (состояние/импульс)
21	- Двоичный вход
22	+ Двоичный вход
33	- Двоичный выход 3:
34	+ Двоичный выход 3:
35	Profibus DP-V1
36	Profibus DP-V1
37	
38	
39	Profibus PA
40	Profibus PA

Из-за ограниченного числа терминалов все выходные сигналы не могут быть доступны одновременно. Максимально можно использовать для выходных сигналов 8 терминалов (без терминала оператора и Profibus PA). Выходные сигналы присоединяются к электрическим цепям, которые соответствуют степени защиты "сверхнизкое напряжение" с безопасной изоляцией от источника питания согласно DIN VDE 0100 Часть 410.

Желаемые выходные сигналы будут определяться согласно вашему заказу деталей во время обработки заказа.

9.5.2 Спецификации кабеля для раздельного монтажа

Если преобразователь измерений устанавливается отдельно от датчика, необходимо использовать следующие кабели:

Электродный кабель: экранированная скрученная пара. Чтобы защитить кабель от внешнего воздействия, скрученная пара проводов покрыта дополнительным общим экраном. Например, LiYCY-CY 1 x2 x 0.25 мм²

Кабель катушки электромагнита: $3 \times 0.75 \text{ мm}^2$ с обычным экраном, например (N)YLHCY-J 3 х 0.75 мм²

Наружный экран заземляется с помощью специальных эластичных ЕМС сальников кабеля.

9.5.3 Схемы электропроводки

9.5.3.1 Схема электропроводки компактного монтажа датчика и UMF

Отсек соединений для монтируемого преобразователя UMF Тип защиты выходных сигналов: EEx ia IIC/IIB

Operating Instructions UMF,

File: UMF_BA_02_eng

9.5.3.2 Схема электропроводки раздельного монтажа датчика и UMF

Отсек соединений для отдельного преобразователя UMF Тип защиты выходных сигналов: EEx ia IIC/IIB

File: UMF_BA_02_eng

9.5.4 Присоединение HART[®]

Есть несколько соединений коммуникации HART[®]. Однако, сопротивление контура (петли) должно отвечать спецификациям нагрузки, указанным в разделе 6.3. Интерфейс HART[®] присоединяется к клеммам 11 и 12 или клеммам 41 и 42.

9.5.5 Соединение SensorPort2

SensorPort 2 - конфигурационное программное обеспечение Bopp & Reuther Heinrichs Messtechnik для рабочих приборов, совместимых с HART[®] или PROFIBUS PA. Для того, чтобы присоединить UMF к SensorPort 2, необходим интерфейс для HART[®] или Profibus PA. Возможна также стационарная инсталляция интерфейса в систему.

10 Дисплей и интерфейс оператора

10.1 Общая информация

Преобразователем UMF можно управлять, используя терминал оператора, персональный или портативный компьютеры, оснащенные конфигурацией программного обеспечения SensorPort 2 или коммуникацией HART.

10.2 Дисплей

Терминал оператора UMF - это двух-строчный буквенно-цифровой дисплей размером 16 x 60 мм, каждая строка имеет 16 знаков. На дисплей выводятся данные измерений и настройки.

10.3 Интерфейс оператора

10.3.1 Терминал оператора

Название функциональных классов высвечивается заглавными буквами. Функции внутри функциональных классов показаны заглавной и строчными буквами. Функциональные классы и их функции описываются в разделах 10.3.5 (Функциональные классы) и 10.3.6 (Функции).

Примеры информации и данных, высвечиваемых на нижней строке:

- информационные тексты;
- да/нет ответы;
- альтернативные значения;
- цифровые значения (и, если нужно, размер)

При попытке изменить значения без ввода действующего пароля на экране появится надпись "в доступе отказано!".

10.3.2 Клавиши и их функции

Для изменения настроек есть шесть клавиш. Не нажимайте на эти клавиши острыми или заостренными предметами, такими как карандаши или отвертки.

Клавиши с курсором: используя клавиши с курсором, вы можете менять цифровые значения, давать ответ да/нет и выбирать параметры. Каждой клавише с курсором предназначен символ в следующей таблице.

Описание клавиш с курсором	Символ
Курсор, стрелка вправо	
Курсор, стрелка влево	
Курсор, стрелка вверх	
Курсор, стрелка вниз	

Блок управления ВЕ

"Esc" клавиша: клавиша "Esc" позволяет отменить текущее действие. Нажатие "Esc" возвращает непосредственно в функциональный класс ИЗМЕРЯЕМЫЕ ВЕЛИЧИНЫ.

ENTER клавиша: нажатие ↓ (ENTER) переводит вас с уровня меню на уровень параметров. Все вводы вы подтверждаете нажатием клавиши ↓.

Передвижение десятичной точки вправо:

установите ноль слева от цифры между 1 и 9. Нажатием ↓ увы сохраняете данное значение и выходите из пункта меню. Когда вы вернетесь в пункт меню, десятичная точка будет сдвинута на одну цифру вправо. Слева высветится ноль, которому можно будет вновь присвоить какое-то значение.

Передвижение десятичной точки влево:

установите наиболее значимую цифру на ноль. Нажатием J увы сохраняете новое значение и выходите из пункта меню. Когда вы вернетесь в пункт меню, десятичная точка будет сдвинута на одну цифру влево. Слева высветится новый ноль.

10.3.2.1 Режимы работы

Преобразователь UMF может работать в следующих режимах:

 Режим визуального отображения: 	высвечиваются различные сочетания измеряемых величин и настроек UMF. Изменение параметров невозможно.
 Режим программирования: 	возможность программирования параметров UMF. После ввода пароля пользователь можно менять или функции, которые меняет пользователь (пароль пользователя), или все функции для модификации (служебный пароль).

10.3.2.2 Пароль

Пароли допуска защищают режим программирования от несанкционированного входа. Все функции, которые может менять пользователь, доступны после ввода пароля пользователя. Этот пароль заказчик может изменить после того, как прибор был введен в эксплуатацию. Новый пароль храните в защищенном месте.

При доставке UMF с завода пароль 0002.

При помощи служебного пароля можно менять важнейшие настройки (например, заводские настройки). Этот пароль сохраняется для службы НМ и заказчику не сообщается.

10.3.3 Структура программно обеспечения

Функции программного обеспечения UMF разделяются на функциональные классы. Эти функциональные классы организованы в форме кольца.

10.3.3.1 Условные обозначения (легенда)

10.3.4 Рабочий пример изменения значения затухания

клавиша	действие
	Дисплей в режиме визуального отображения.
Esc	Клавиша Esc переводит вас в функциональные классы.
	Используя клавиши с курсором, выбираете функциональный класс ПАРОЛИ.
	Выбираете функцию "пароль пользователя".
Ļ	Подтверждаете ввод нажатием клавиши ENTER.
	Устанавливаете с помощью клавишей с курсором пароль пользователя 0002.
Ļ	Подтверждаете ввод клавишей ENTER. Высветится надпись "пароль действительный".
Esc	Нажатие Esc возвращает вас к функциональным классам.
	Используя курсоры, выберете функциональный класс ОБРАБОТКА ИЗМЕРЕНИЙ.
	Используя курсоры, выберете функцию "затухание".
Ļ	Подтверждаете ввод нажатием клавиши ENTER.
	Устанавливаете желаемое значение клавишами с курсором.
Ļ	Подтверждаете ввод нажатием клавиши ENTER.
Esc	Нажатие Esc возвращает вас в функциональный класс ИЗМЕРЯЕМЫЕ ВЕЛИЧИНЫ.
	Используя курсоры, выбираете функцию, например, "объем потока".

10.3.5 Функциональные классы преобразователя UMF без служебных функций

Operating Instructions UMF,

Page 24 of 51

File: UMF_BA_02_eng

10.3.6 Функции программного обеспечения

Здесь приводится описание функций программного обеспечения, доступ к которым дает пароль пользователя.

10.3.6.1 Функциональный класс ИЗМЕРЯЕМЫЕ ВЕЛИЧИНЫ

Функциональный класс ИЗМЕРЯЕМЫЕ ВЕЛИЧИНЫ содержит все функции, которые выводят на экран измеряемые величины.

10.3.6.1.1 Объемный расход потока

Если вы выбираете функцию "объем потока", на экране появится следующая запись (пример):

объем потока	
100.0 л/ч	

На экран дисплея выводится текущий объемный расход потока. Единицы вывода определяются в функциональном классе ПОТОК с использованием функции "единица объема потока".

10.3.6.1.2 Относительный поток

Относительный расход потока – это процентное отношение (тока) объема потока и введенного верхнего значения диапазона объема потока. Это верхнее значение диапазона вы устанавливаете в функциональном классе ПОТОК, используя функцию "объем потока QV URV."

Вычисление относительного расхода потока основано на следующей формуле:

относительный расход потока = 100% x (Qaбc - LRV) / (URV - LRV) При выборе

функции "относительный поток", на экране высвечивается следующее (пример):

относительный	ПОТОК	
95.3%		

10.3.6.1.3 Счетчик 1 прямого потока

Счетчик 1 прямого потока и счетчик 2 прямого потока - независимые счетчики, которые могут сбрасываться раздельно. При помощи счетчика 1, например, вы можете измерять годовой или месячный объем. При выборе функции "счетчик прямого потока 1" на дисплее появится запись (пример):

счетчик 1 прямой + 000001.0 I

На дисплее будет показано текущее значение счетчика 1 прямого потока. Единицы измерения вы определяете в функциональном классе СЧЕТЧИКИ, используя функцию "единицы счетчика"

10.3.6.1.4 Счетчик 2 прямого потока

Функция идентична функции счетчика 1 прямого потока. Например, счетчик прямого потока 2 можно использовать для ежедневного подсчета. При выборе функции "счетчик прямого потока 2" на дисплее появится запись (пример):

На дисплее будет показано текущее значение счетчика 2 прямого потока. Единицы измерения вы определяете в функциональном классе СЧЕТЧИКИ, используя функцию "единицы счетчика".

10.3.6.1.5 Счетчик обратного потока

При выборе функции "счетчик обратного потока" на дисплее появится запись (пример):

На дисплее будет показано текущее значение счетчика обратного потока. Единицы измерения вы определяете в функциональном классе СЧЕТЧИКИ, используя функцию "единицы счетчика".

10.3.6.1.6 Скорость потока

При выборе функции "скорость потока " на дисплее появится запись (пример):

скорость потока 1.5 м/с

На дисплее будет показано текущее значение средней скорости потока среды. Единицы измерения на дисплее всегда метры в секунду (м/с). Средняя скорость выводится из измеренного объемного расхода и площади потока трубы измерительного прибора. Чтобы вычислить площадь потока в трубе измерительного прибора введите внутренний диаметр измерительной трубы. Это можно сделать, используя функцию "внутренний диаметр" в функциональном классе НАСТРОЙКИ ДАТЧИКА + UMF.

10.3.6.1.7 Дисплей во время запуска

С помощью этой функции вы устанавливаете режим визуального наблюдения, который активируется автоматически после сбоя подачи энергии. Выбрав функцию "дисплей во время запуска" и нажав , вы увидите на экране следующую запись:

дисплей	
[Qv]	

Введя пароль пользователя или служебный пароль и нажимая ▲ или ▼, вы можете выбирать следующие показатели: объем потока, счетчик прямого потока 1, счетчик прямого потока 2, счетчик обратного потока, объем потока и счетчик прямого потока 1, объем потока и счетчик прямого потока 2, объем потока и счетчик обратного потока, объем потока и счетчик предустановки, неисправленное значение. Подтверждаете и сохраняете выбор нажатием ↓.

Если вы выбираете функцию "объем потока + счетчик прямого потока 1", на дисплее высвечивается (пример):

100. 0 л/ч	
1234.56 л	

Первая строка LCD показывает значение текущего объема потока, а вторая – значение счетчика прямого потока 1. Единицы на дисплее выбираются с помощью функции "единицы объема потока" в функциональном классе ПОТОК, а единицы счетчика с использованием функции "единицы счетчика". Такая же процедура применяется с опциями других счетчиков.

Если вы выбираете функцию "неисправленное значение", на дисплее высвечивается (пример):

46509.0	248567
171454	-65.001

Показанные значения – это десятичные величины, которые означают следующее:

Верхний левый угол: показатель напряжения на электродах измерительной цепи Нижний левый угол: показатель индуктивного тока для выработки магнитного поля Верхний правый угол: показатель верхнего значения ссылки калибровки Нижний правый угол: показатель нижнего значения ссылки калибровки

10.3.6.2 Функциональный класс ПАРОЛИ

Функциональный класс ПАРОЛИ охватывает функции ввода и изменения пароля пользователя и ввода служебного пароля.

10.3.6.2.1 Пароль пользователя

После выбора функции "пароль пользователя" и нажатия Ц на экране появится следующая запись:

пароль	
пользователя?	
<u>0</u> 000	

После ввода пароля вы подтверждаете ввод нажатием ↓. Если введенный пароль верен, на дисплее высветится следующая запись:

пароль действителен

Если введенный пароль не верен, на дисплее высветится запись:

пароль не	
действителен	

При доставке прибора с завода пароль **0002**.

10.3.6.2.2 Изменение пароля пользователя

После выбора функции "изменение пароля пользователя" и нажатия ↓ на экране появится следующая запись:

ввод новый пароль <u>0</u>000

10.3.6.3 Функциональный класс СЧЕТЧИКИ

Функциональный класс СЧЕТЧИКИ содержит все счетные функции и функцию суммирования.

10.3.6.3.1 Единицы счетчика

После выбора функции "единицы счетчика" и нажатия ↓ высветится следующее поле выбора:

накопление в:	
[мЗ]	

На дисплее появится текущая единица. Используя клавиши с курсором, вы можете выбирать единицы объема: л, м ³, галлон США и английский галлон. Подтверждение и сохранение выбора осуществляется нажатием ... Счетчики будут показывать измерения в установленной вами единице.

После смены единицы измерения содержание счетчика сбрасывается.

10.3.6.3.2 Сброс счетчика 1

Выбрав функцию "сброс счетчика 1" и нажав ↓ вы увидите на дисплее следующее поле выбора:

сброс счетчика?
[нет]

10.3.6.3.3 Сброс счетчика 2

Выбрав функцию "сброс счетчика 2" и нажав , вы увидите на дисплее следующее поле выбора:

сброс счетчика?	
[нет]	

Процедура точно такая же, что и со счетчиком 1.

10.3.6.3.4 Сброс счетчика обратного потока

Выбрав функцию "сброс счетчика обратного потока" и нажав ⊣, вы увидите на дисплее следующее поле выбора:

сброс счетчика?	
[нет]	

Процедура точно такая же, что и со счетчиком 1.

10.3.6.4 Функциональный класс ОБРАБОТКА ИЗМЕРЕНИЙ

Функциональный класс ОБРАБОТКА ИЗМЕРЕНИЙ включает функции, которые относятся к обработке измеряемых значений.

10.3.6.4.1 Затухание (постоянная времени)

Постоянная времени предназначена гасить резкое изменение расхода потока или помехи. Постоянная времени затрагивает дисплей и сигналы на выходах. Ее можно устанавливать с интервалом в 1 секунду от 1 до 60 секунд. После выбора функции "затухание" и нажатия дисплее высветится следующее поле выбора:

затухание	
<u>0</u> 1 c	

Будет показана текущая постоянная времени.

10.3.6.4.2 Отсечка малого потока

Значение отсечки малого потока – это предельное значение, установленное как процентное отношение к верхнему значению диапазона расхода потока. Если объем падает ниже данного значения, измеряемые величины устанавливаются на "НОЛЬ". Значение отсечки малого потока можно устанавливать от 0 до 20% с 1-процентным наращением. После выбора функции "отсечка малого расхода" и нажатия ↓ а дисплее высветится следующее поле выбора:

отсечка малого	расхода
01 %	

10.3.6.4.3 Гистерезис отсечки малого расхода

Гистерезис отсечки малого расхода объема - это скорость потока, выраженная как процентное отношение верхнего значения диапазона, при котором установленный объем отсечки малого расхода должен быть превышен, чтобы отключить функцию. Гистерезис отсечки малого потока объема можно устанавливать с 0. 1-процентным наращением от 0 до 10%. После выбора функции "гистерезис отсечки малого расхода" и нажатия ↓ на дисплее высветится следующее

Heinrichs

поле выбора:

1

гистерезис отсечки малого расхода 0,5 %

10.3.6.4.4 Калибровка нулевой точки

С помощью функции "калибровка нулевой точки" можно повторно калибровать нулевую точку во время обычной работы.

ВНИМАНИЕ!: Эту функцию можно проводить только в том случае, если в датчике нет текущей среды. В противном случае впоследствии измерения расхода потока будут неверными.

После выбора функции "калибровка нулевой точки" и нажатия ↓ на дисплее высветится следующее поле выбора:

Х.	ххх м3/ч
кал	1. ? [да]

С помощью клавиш с курсором выберите "нет" или "да". Подтвердить и сохранить свой выбор вы можете нажатием ↓. Если вы выбрали "да", нулевая точка будет перекалибрована. Если вы не хотите повторной калибровки нулевой точки, вы должны выйти из этой функции, выбрав "нет".

10.3.6.5 Функциональный класс ПОТОК

В функциональном классе ПОТОК вы можете определять единицы измерения, верхнее значение диапазона, минимальное и максимальное предельное значение вместе с соответствующим гистерезисом.

10.3.6.5.1 Единицы объема потока

С помощью этой функции вы определяете физическую единицу для измеряемой величины и верхнее значение диапазона объема потока. После выбора функции "объем потока" и нажатия на дисплее высветится следующее поле выбора:

Вы можете сделать выбор из следующих единиц: л/ч, л/мин, л/с, м3/ч, м3/мин, м3/с, USG/ч, USG/мин, USG/с, UKG/ч, UKG/мин, UKG/с

USG – галлон США; UKG – английский галлон

Вы подтверждаете и сохраняете свой выбор нажатием ...

10.3.6.5.2 Нижнее значение диапазона объема

С помощью этой функции вы определяете нижнее значение диапазона для объема потока. По умолчанию это значение сводится к нулю. Однако, если вы хотите, чтобы распространялся выходной сигнал, нижнее значение диапазона может быть увеличено. Это повлияет на 0/4-20мА токовый выход и частотный выход. Импульсный выход при этом не меняется.

QV LRV = 0%	
0.0 л/ч	

Нижнее значение диапазона вводится во второй строке, ввод подтверждается нажатием ...

10.3.6.5.3 Верхнее значение диапазона объема потока

С помощью этой функции вы определяете верхнее значение диапазона для объема потока. Верхнее значение диапазона вводится в единице, выбранной с использованием функции "единица объемного потока QV."

После выбора функции "верхнее значение диапазона объема" и нажатия ↓ на дисплее высветится следующее поле выбора:

На дисплее будет показано текущее верхнее значение диапазона для объема потока. После установки нового верхнего значения диапазона для объема потока, подтвердите свой ввод нажатием ...

10.3.6.5.4 MIN предел объема потока

Минимум или нижнее предельное значение представляет собой процентное отношение и соотносится с нижним значением диапазона, установленным для объема потока. Его можно вычислить через выход состояния. После выбора функции "объем потока" и нажатия дисплее высветится следующее поле выбора:

предел объема потока
MIN = <u>1</u> 0 %

После установки нового предельного значения MIN, подтвердите свой выбор нажатием ...

10.3.6.5.5 МАХ предел объема потока QV

Максимум или верхнее предельное значение представляет собой процентное отношение и соотносится с верхним значением диапазона, установленным для объема потока. Его можно вычислить через выход состояния. После выбора функции " МАХ предел объема потока QV " и

нажатия ↓ на дисплее высветится следующее поле выбора:

предел	объема	потока
	MAX = 9	<u>9</u> 0 %

После установки нового предельного значения МАХ, подтвердите свой выбор нажатием ...

10.3.6.5.6 Гистерезис предельного значения QV

Operating	Instructions	UMF,
-----------	--------------	------

Гистерезис предельных значений - это расход потока в процентах на основе верхнего значения диапазона, указывающий значение, которое должно или не доходить до установленного предельного значения или превышать установленную величину, чтобы активировать или отключить действие. Гистерезис предельных величин можно устанавливать с 1-процентным наращением от 1 до 10%. После выбора функции "предельный гистерезис QV" и нажатия ↓ на дисплее высветится следующее поле выбора:

QV предельный
гистерезис <u>0</u> 1 %

На дисплей будет выведен текущий гистерезис. После установки гистерезиса подтвердите свой ввод нажатием ↓.

10.3.6.5.7 Объем потока LSL (информационное поле)

Представляет минимальное верхнее значение диапазона на основе внутреннего диаметра датчика.

10.3.6.5.8 Объем потока USL (информационное поле)

Представляет максимальное верхнее значение диапазона на основе внутреннего диаметра датчика.

10.3.6.6 Функциональный класс ИМПУЛЬСНЫЙ ВЫХОД

Функциональный класс ИМПУЛЬСНЫЙ ВЫХОД содержит функции, относящиеся к импульсному выходу.

10.3.6.6.1 Импульсный или частотный выход

С помощью функции "импульсный или частотный выход", вы устанавливаете, будут ли подсчитанные за единицу измерения импульсы или частота от 0 до 1 кГц выводить данные в диапазон измерения.

После выбора функции " импульсный или частотный выход" и нажатия ↓ на дисплее высветится следующее поле выбора:

Нажимая ▲ или [▼], вы можете выбирать импульсы или частоту. Подтверждение и сохранение выбора осуществляется нажатием ...

10.3.6.6.2 Единицы импульсного выхода

С помощью этой функции вы устанавливаете единицы измерения. Установка происходит независимо от установки внутренних счетчиков. После выбора функции " единицы импульсного выхода" и нажатия ... на дисплее высветится следующее поле выбора:

На дисплее будет показано текущее значение. Подтверждение и сохранение выбора осуществляется нажатием

10.3.6.6.3 Величина импульса

С помощью этой функции вы определяете, сколько импульсов будет выводиться за единицу отсчета. После выбора функции " величина импульса" и нажатия Ц на дисплее высветится следующее поле выбора:

1 импульс в [1.0] единицу

На дисплее высветится текущее значение. Величина импульса – обратное значение импульсов за единицу измерения. Нажимая \wedge или \checkmark , вы можете выбирать следующие значения импульса:

0.001, 0.01, 0.1, 1.0, 10.0, 100.0

Подтверждение и сохранение выбора осуществляется нажатием ...

Примеры: требуется 10 импульсов в единицу. Устанавливается 0.1 единиц на импульс. требуется 1000 импульсов в единицу. Устанавливается 0.001 единиц на импульс.

10.3.6.6.4 Длительность импульса

С помощью этой функции вы можете изменять длительность импульса для вывода данных. Если длительность импульса установленного верхнего значения диапазона слишком велика для фактического числа импульсов, на дисплее в течение примерно 2 секунд будет сообщение об ошибке "перегрузка импульсного выхода на 100%".

После выбора функции "длительность импульса" и нажатия ↓ на дисплее высветится следующее поле выбора:

длительность импульса <u>0</u>050 мс

На дисплее высветится текущее значение. Установив новую длительность импульса, подтвердите ввод нажатием ↓.

10.3.6.7 Функциональный класс ДВОИЧНЫЕ ВЫХОДЫ И ВХОДЫ

Функциональный класс ДВОИЧНЫЕ ВЫХОДЫ И ВХОДЫ включает функции для установки выхода состояния, импульсных выходов и двоичных входов.

10.3.6.7.1 Двоичный выход в активном состоянии

С помощью функции "двоичный выход, активный" вы определяете, отрыт или закрыт выход состояния, когда происходит выбранное действие. Таким образом, возможна поддержка функций безопасности, так как можно использовать активные сигналы. После выбора функции " затухание" и нажатия ... на дисплее высветится следующее поле выбора:

двоичный выход активный [закрыт]

При выборе "выход состояния активный [открыт]", можно также определять сбой питания. Подтверждаете и сохраняете выбор нажатием ↓.

10.3.6.7.2 Назначение двоичного выхода В2 (выход состояния)

С помощью данной функции вы определяете, какое действие следует предписать выходу. Наиболее общее назначение – тревога, потому что при этом назначении через выход состояния контролируются все установленные величины и функция самоконтроля. После выбора функции "назначение двоичного выхода В2" и нажатия – на дисплее высветится следующее поле выбора:

В2 назначение	
[тревога]	

На экране появится текущее назначение. После ввода пароля пользователя или служебного пароля вы можете выбрать одно из следующих назначений клавишами ▲ или ♥:

прямой поток, обратный поток, MIN Qv, MAX Qv, тревога, IMP2

При настройке IMP2 будет реализован второй импульсный выход, который смещен по фазе на 90°. Этот выход можно использовать для контроля загрузки компьютеров во время момента передачи операции. Подтверждение и сохранение выбора осуществляются нажатием ...

10.3.6.7.3 Назначение двоичного выхода ВЗ (опция для момента передачи операций)

Во время момента передачи операций выход состояния будет реализован через двоичный выход 3, потому что В2 используется для импульсного выхода 2.

После выбора функции "назначение двоичного выхода ВЗ" и нажатия ↓, на дисплее высветится следующее поле выбора:

На экране высветится текущее назначение двоичного выхода. Вы можете выбрать следующие назначения:

Operating Instructions UMF,

File: UMF_BA_02_eng

прямой поток, обратный поток, MIN Qv, MAX Qv, тревога, IMP2, отсутствует. Подтверждение и сохранение осуществляются нажатием ...

10.3.6.7.4 Назначение двоичного входа

Двоичный вход (внешний механизм сброса) – опция для момента передачи операций. Он может присоединяться к любой клавише

Нажатие клавиши в течение короткого периода времени повысит точность показаний счетчика. Дисплей возвращается в нормальный режим работы спустя несколько секунд (время ожидания).

Нажатие и удерживание клавиши в течение какого-то времени стирает потенциальные сообщения об ошибке и запускает тестовую последовательность.

С помощью данной функции вы определяете, какое действие придать входу. После выбора функции "назначение двоичного входа" и нажатия . на дисплее высветится следующее поле выбора:

Вы можете выбирать следующие назначения: счетчик=0, нулевая точка, стирание ошибки и отсутствует.

Подтверждение и сохранение выбора осуществляется нажатием ...

10.3.6.8 Функциональный класс ТОКОВЫЙ ВЫХОД

В функциональном классе ТОКОВЫЙ ВЫХОД вы производите настройки токового выхода UMF.

10.3.6.8.1 Токовый выход 0/4-20 мА

С помощью функции "0/4-20 мА токовый выход" вы устанавливаете, будет ли измеряемым величинам предназначен ток от 0 до 20 мА или от 4 до 20 мА. После выбора функции "0/4 мА токовый выход" и нажатия ↓ на дисплее высветится следующее поле выбора:

токовый выход
[4]-20 мА

Подтверждение и сохранение выбора осуществляется нажатием

10.3.6.8.2 Токовый выход тревоги

С помощью данной функции вы определяете положение, принимаемое токовым выходом при обнаружении состояния тревоги. Например, эта информация может анализироваться в контрольной системе. После выбора функции "токовый выход тревоги" и нажатия . На дисплее высветится следующее поле выбора:

На экране высветится текущая функция токового выхода. Вы можете выбирать следующие функции тревоги: <3.8 мА, >22 мА и "не используется". Подтверждение и сохранение выбора осуществляется нажатием ↓.

10.3.6.9 Функциональный класс МОДЕЛИРОВАНИЕ

Функциональный класс МОДЕЛИРОВАНИЕ охватывает функции моделирования выходов UMF. Периферийные устройства, присоединенные к прибору, можно проверять без текущей среды.

10.3.6.9.1 Моделирование вкл/выкл

С помощью функции "Моделирование вкл/выкл." можно активировать или отключть моделирование. После выбора функции "моделирование вкл/выкл." и нажатия ысветится следующее поле выбора:

моделирование	
[выкл.]	

Подтверждение и сохранение выбора осуществляется нажатием . Токовый выход, импульсный выход и выход состояния примут положения, описанные выше.

10.3.6.9.2 Моделирование заданного значения Q/прямое

После выбора функции "моделирование заданного значения Q/прямое" и нажатия , на дисплее высветится следующее поле выбора:

предустановка	
[Qaбc]	

После выбора "предустановка [Qaбc]" и подтверждения выбора нажатием , можно устанавливать значение моделирования, используя "моделирование заданного значения Q".

Выбрав "предустановка [прямая]" и подтвердив свой выбор нажатием ↓, вы устанавливаете значение моделирования для выходов В2 и В3, импульсный выход или токовый выход, используя "прямое моделирование".

10.3.6.9.3 Моделирование заданного значения Q

При помощи функции "моделирование заданного значения Q" вы можете устанавливать значение моделирования для выходных сигналов. После выбора функции "моделирование заданного значения Q" и нажатия ↓ на дисплее высветится следующее поле выбора:

заданное значение	Q
ХХХ. ХХ л/ч	

Установите значение и подтвердите ваш ввод нажатием ...

10.3.6.9.4 Прямое моделирование выходов В2 и В3

При помощи этой функции вы можете активировать или деактивировать выход состояния. После выбора функции "прямое моделирование заданного выходы B2,3" и нажатия на дисплее высветится следующее поле выбора:

выходы В2,3	
[выкл.]	

Подтверждение и сохранение выбора осуществляется нажатием ...

10.3.6.9.5 Прямое моделирование импульсного выхода

При помощи функции "прямое моделирование импульсного выхода" вы можете определять частоту для вывода на импульсный выход. После выбора функции "прямое моделирование импульсного выхода" и нажатия . На дисплее высветится следующее поле выбора:

установленная частота	
<u>0</u> 000.0 Гц	

После установки новой частоты подтвердите свой ввод нажатием

10.3.6.9.6 Прямое моделирование токового выхода

При помощи функции "прямое моделирование токового выхода" вы можете определять ток для вывода на токовый выход. После выбора функции "прямое моделирование токового выхода" и нажатия ↓ на дисплее высветится следующее поле выбора:

установка тока	
<u>1</u> 2.00 мА	

После установки нового токового сигнала подтвердите свой ввод нажатием

10.3.6.10 Функциональный класс САМОКОНТРОЛЬ

Функциональный класс САМОКОНТРОЛЬ содержит функции, связанные с самоконтролем преобразователя и датчика.

10.3.6.10.1 Самоконтроль вкл/выкл

С помощью функции "самоконтроль вкл/выкл." вы можете активировать и отключать периодический контроль цепи катушки электромагнита. Это измерение предназначено для подавления температурной зависимости преобразователя. Во время выборки в 0. 5 секунд преобразователь не подключен к компьютеру; последнее измеренное значение будет выведено на выходы сигнала. Функция активируется по умолчанию. После выбора функции "самоконтроль вкл/выкл." и нажатия \downarrow на дисплее высветится следующее поле выбора:

самоконтроль	
[вкл]	

Подтверждение и сохранение выбора осуществляется нажатием

10.3.6.10.2 Период самоконтроля (STP)

С помощью этой функции вы можете установить период времени, после которого будет периодически измеряться ток катушки электромагнита. Можно устанавливать период от 35 секунд до 999 секунд. После выбора функции "период самоконтроля" и нажатия на дисплее высветится следующее поле выбора:

Подтверждение и сохранение выбора осуществляется нажатием ...

10.3.6.10.3 Ссылка калибровки вкл/выкл

С помощью функции "ссылка калибровки вкл/выкл." вы активируете или отключаете периодическую перекалибровку преобразователя. Целью данной функции являются периодический самоконтроль и повышение долгосрочной стабильности. Во время автоматической ссылки калибровки (30 секунд) преобразователь не подключен к компьютеру; последнее измеренное значение выводится на выходы сигнала.

После выбора функции "ссылка калибровки вкл/выкл." и нажатия ↓ на дисплее высветится следующее поле выбора:

Подтверждение и сохранение выбора осуществляется нажатием

10.3.6.10.4 Период ссылки калибровки (GAP)

Функция "период ссылки калибровки" – это умножение функции "период самоконтроля". С помощью этой функции вы определяете количество периодов самоконтроля (STP), после которого будет проводиться ссылка калибровки. Пример:

"Период самоконтроля" был установлен на 40 секунд; ссылка калибровки должна проводиться каждые 6 часов.

GAP = 6 * 3600c / 40c = 5400

После выбора функции "период ссылки калибровки" и нажатия ↓ на дисплее высветится следующее поле выбора:

ссылка калибровки GAP = 05400*STP

Подтверждение и сохранение выбора осуществляется нажатием ...

10.3.6.10.5 Выявление пустой трубы вкл/выкл

С помощью функции "выявление пустой трубы вкл/выкл." можно активировать или отключить постоянное выявление пустой трубы. После выбора функции "выявление пустой трубы вкл/выкл." и нажатия , на дисплее высветится следующее поле выбора:

выявление пустой трубы
[вкл]

Подтверждение и сохранение выбора осуществляется нажатием

10.3.6.10.6 Период выявления пустой трубы

С помощью функции "период выявления пустой трубы" можно установить отрезок времени, после которого будет проводиться выявление. При вводе 00 минут выявление будет осуществляться непрерывно.

После выбора функции "период выявления пустой трубы" и нажатия ↓ на дисплее высветится следующее поле выбора:

EPD период	
10 мин	

Подтверждение и сохранение выбора осуществляется нажатием ...

10.3.6.11 Функциональный класс НАСТРОЙКИ ДАТЧИКА + UMF

Функциональный класс НАСТРОЙКИ ДАТЧИКА + UMF охватывает функции для данных измерительного прибора, которые относятся к точке измерения.

10.3.6.11.1 Постоянная датчика С

Постоянная датчика С - это значение калибровки датчика, присоединенного к преобразователю. Для гарантии правильного измерения значение калибровки должно быть введено в преобразователь UMF. Постоянная определяется после калибровки измерительных приборов и наносится на типовую плату датчика. После выбора функции "постоянная датчика" и нажатия дисплее высветится следующее поле выбора:

пост. датчика/мВ
<u>0</u> 1234.56 м3/ч

Подтверждение и сохранение выбора осуществляется нажатием ...

10.3.6.11.2 Тип датчика

Функция "тип датчика" содержит тип датчика, с которым поставляется измерительный преобразователь. Эта настройка необходима при выполнении запросов через HART[®] или Profibus. После выбора функции "тип датчика" и нажатия ↓ на дисплее высветится следующее поле выбора:

тип датчика	
[EPYE]	

Подтверждение и сохранение выбора осуществляется нажатием ...

10.3.6.11.3 Внутренний диаметр

Внутренний диаметр датчика, присоединенного к преобразователю, необходим для вычисления средней скорости потока. Следует проверить внутренний диаметр в преобразователе UMF, чтобы гарантировать точное измерение. После выбора функции "внутренний диаметр" и нажатия дисплее высветится следующее поле выбора:

внутренний диаметр
50 мм

Подтверждение и сохранение выбора осуществляется нажатием ...

10.3.6.11.4 Язык

С помощью функции "язык" вы можете выбирать различные языки. После выбора функции "язык" и нажатия и нажатия

язык	
[немецкий]	

Вы можете выбрать следующие языки: немецкий и английский Подтверждение и сохранение выбора осуществляется нажатием ...

10.3.6.11.5 Частота возбуждения

С помощью функции "частота возбуждения" можно устанавливать частоту возбуждения тока катушки электромагнита. Так как частота возбуждения зависит от датчика, ее нельзя установить произвольно. По умолчанию частота возбуждения равна 6. 25 Гц.

После выбора функции "частота возбуждения" и нажатия ↓ на дисплее высветится следующее поле выбора:

частота возбуждения
[6.25 Гц]

Подтверждение и сохранение выбора осуществляется нажатием ...

10.3.6.11.6 Частота питающей цепи

Когда датчик присоединяют к напряжению питания переменного тока (AC), он автоматически вычисляет частоту питающей цепи, для того чтобы достичь оптимального подавления помех. Для гарантии подавления помех вспомогательного источника питания (24В постоянного тока DC), устанавливается частота окружающей питающей цепи (50 Гц или 50 Гц).

После выбора функции "частота питающей цепи" и нажатия ↓ на дисплее высветится следующее поле выбора:

частота питающей цепи [50 Гц]

Подтверждение и сохранение выбора осуществляется нажатием

10.3.6.11.7 Направление потока

С помощью функции "направление потока" вы определяете направление потока, которое будет измеряться датчиком. Для того чтобы исключить измерение обратного потока, вы выбираете, например, "прямое". После выбора функции "направление потока" и нажатия на дисплее высветится следующее поле выбора:

направление потока
[прямое]

Вы можете выбирать следующие направления: прямое, обратное, прямое и обратное.

Подтверждение и сохранение выбора осуществляется нажатием ...

10.3.6.11.8 Версия программного обеспечения (информационное поле)

С помощью данной функции вы можете вывести на экран используемую версию программного обеспечения. После выбора функции "версия программного обеспечения UMF" и нажатия дисплее высветится следующее поле выбора:

> версия UMF программное обеспечение 001

10.3.6.11.9 Серийный номер (информационное поле)

С помощью функции "серийный номер" преобразователю присваивается номер. Этот номер обеспечивает допуск к внутренним данным производителя в случае необходимости обслуживания прибора или для других целей. Серийный номер нанесен на типовую плату преобразователя UMF. После выбора функции "серийный номер" и нажатия на дисплее высветится следующее поле выбора:

серийный номер			
<u>0</u> 00000			

10.3.6.11.10 Серийный номер UMF (информационное поле)

С помощью функции "серийный номер" преобразователю присваивается исходный номер. Таким образом, при замене преобразователя его можно отследить до первоначального номера. После выбора функции "серийный номер UMF" и нажатия ыбора функции "серийный номер UMF" и нажатия ыбора:

10.3.6.11.11 Запрос ошибок системы

С помощью этой функции вы можете выявлять код ошибки возникших ошибок системы.

10.4 Сообщения об ошибках преобразователя UMF

Если сообщения об ошибке не исчезают после предыдущей функции, свяжитесь, пожалуйста, с производителем.

10.4.1 Самоконтроль ошибок

Самоконтроль преобразователя осуществляется во время нормальной работы постоянно. Если обнаружена ошибка, чередуется с измеряемой величиной на дисплее терминала оператора. Кроме этого, срабатывает выход тревоги.

Можно распознать следующие ошибки:

Сообщение об ошибке	Причина
"токовый выход	тревога размыкается 2/22 мА, при 0/4-21.6 мА для I > 21.6 мА, при 4-20.
перегружен"	4 мА для I > 20.4 мА
"имп. вых.перегр"	коэффициент заполнения импульсного выхода <1:1 или F > 1 кГц
"индук. ток ?"	ток катушки электромагнита <нормальное значение-10% (разрыв) или >норм.
	значение +10%. Выходные сигналы устанавливаются на ноль.
"насыщ. измер.	аналого-цифровой преобразователь перегружен ((>262000).
схема"	Выходные сигналы устанавливаются на ноль.
"отсутств. EEPROM"	EEPROM с данными измерительной точки отсутствуют или ошибка
	контрольной суммы. Выходные сигналы устанавливаются на ноль.
"параметры	неверный пароль или одна из ошибок произошла во время проверки
несовместимы"	достоверности. Выходные сигналы устанавливаются на ноль.

10.4.1.1 Ошибка системы

Ошибки системы производят код ошибки, который показан в следующей таблице. Если происходит ошибка системы, значит, возник серьезный дефект и требуется квалифицированное обслуживание.

В стадии разработки

Код ошибки	Возможная причина

11 Сертификаты и одобрения

СЕ маркировка: Преобразователь соответствует законным требованиям директив ЕС. Неinrichs-Messtechnik подтверждает успешную проверку, используя СЕ маркировку. ЕМС Директива 89/336 ЕЕС, 92/31 ЕЕС, 93/68 ЕЕС EN 50 081 часть 1 и 2 EN 50 082 часть 1 и 2 NAMUR рекомендация NE21 Директива 94/9/ЕС (директива безопасности)

Класс преобразователь UMF: безопасности: DMT 99 ATEX E 107 X EEx de [ia] IIC / IIB T6 - T3 EEx d [ia] IIC / IIB T6 - T3

> Датчик: См. отдельный список данных датчика

12 Внешние стандарты и директивы

EN 60529 IP степень защиты EN 61010 – требования безопасности к электрическим измерительным, контрольным и лабораторным приборам EN 50 081 часть 1 EN 50,082 часть 2 NAMUR рекомендация NE21 (Стандарты рабочей группы для технологий измерений и контроля в химической промышленности)

13 Торговые офисы Heinrichs Messtechnik

Неіпгісһѕ Messtechnik GmbH ул. Роберт-Пертнель, 9 50739 Кельн Тел. +49 221 4 97 08-0 Факс +49-221 4 97 08-92

13.1 Представители

См. http://www.heinrichs-mt.com/kontakt/index.html

14 Примечания
